2,863 research outputs found

    Comment on ``Evidence for Anisotropic State of Two-Dimensional Electrons in High Landau Levels''

    Full text link
    In a recent letter M. Lilly et al [PRL 82, 394 (1999)] have shown that a highly anisotropic state can arise in certain two dimensional electron systems. In the large square samples studied, resistances measured in the two perpendicular directions are found to have a ratio that may be 60 or larger at low temperature and at certain magnetic fields. In Hall bar measurements, the anisotropy ratio is found to be much smaller (roughly 5). In this comment we resolve this discrepancy by noting that the anisotropy of the underlying sheet resistivities is correctly represented by Hall bar resistance measurements but shows up exponentially enhanced in resistance measurements on square samples due to simple geometric effects. We note, however, that the origin of this underlying resistivity anisotropy remains unknown, and is not addressed here.Comment: 1 page, minor calculational error repaire

    Tunneling and nonlinear transport in a vertically coupled GaAs/AlGaAs double quantum wire system

    Full text link
    We report low-dimensional tunneling in an independently contacted vertically coupled quantum wire system. This nanostructure is fabricated in a high quality GaAs/AlGaAs parallel double quantum well heterostructure. Using a novel flip chip technique to align top and bottom split gates to form low-dimensional constrictions in each of the independently contacted quantum wells we explicitly control the subband occupation of the individual wires. In addition to the expected 2D-2D tunneling results, we have found additional tunneling features that are related to the 1D quantum wires.Comment: 4 pages, 3 figures, submitted to APL Minor revision

    Undoped Electron-Hole Bilayers in a GaAs/AlGaAs Double Quantum Well

    Full text link
    We present the fabrication details of completely undoped electron-hole bilayer devices in a GaAs/AlGaAs double quantum well heterostructure with a 30 nm barrier. These devices have independently tunable densities of the two-dimensional electron gas and two-dimensional hole gas. We report four-terminal transport measurements of the independently contacted electron and hole layers with balanced densities from 1.2×10111.2 \times 10^{11}cm−2^{-2} down to 4×10104 \times 10^{10} cm−2^{-2} at T=300mKT = 300 mK. The mobilities can exceed 1×1061 \times 10^{6} cm2^{2} V−1^{-1} s−1^{-1} for electrons and 4×1054 \times 10^{5} cm2^{2} V−1^{-1} s−1^{-1} for holes.Comment: 3 pages, 3 figure

    New Physics in High Landau Levels

    Get PDF
    Recent magneto-transport experiments on ultra-high mobility 2D electron systems in GaAs/AlGaAs heterostructures have revealed the existence of whole new classes of correlated many-electron states in highly excited Landau levels. These new states, which appear only at extremely low temperatures, are distinctly different from the familiar fractional quantum Hall liquids of the lowest Landau level. Prominent among the recent findings are the discoveries of giant anisotropies in the resistivity near half filling of the third and higher Landau levels and the observation of re- entrant integer quantum Hall states in the flanks of these same levels. This contribution will survey the present status of this emerging field.Comment: 8 pages, 9 figures. To be published in the Proceedings of the 13th International Conference on the Electronic Properties of Two-Dimensional System

    Coulomb Drag in the Exciton Regime in Electron-Hole Bilayers

    Full text link
    We report electrical transport measurements on GaAs/AlGaAs based electron-hole bilayers. These systems are expected to make a transition from a pair of weakly coupled two-dimensional systems to a strongly coupled exciton system as the barrier between the layers is reduced. Once excitons form, phenomena such as Bose-Einstein condensation of excitons could be observed. In our devices, electrons and holes are confined in double quantum wells, and carriers in the devices are induced with top and bottom gates leading to variable density in each layer. Separate contact to each layer allows Coulomb drag transport measurements where current is driven in one layer while voltage is measured in the other. Coulomb drag is sensitive to interlayer coupling and has been predicted to provide a strong signature of exciton condensation. Drag measurement on EHBLs with a 30 nm barrier are consistent with drag between two weakly coupled 2D Fermi systems where the drag decreases as the temperature is reduced. When the barrier is reduced to 20 nm, we observe a consistent increase in the drag resistance as the temperature is reduced. These results indicate the onset of a much stronger coupling between the electrons and holes which leads to exciton formation and possibly phenomena related to exciton condensation.Comment: 12 pages, 3 figure

    Scattering Mechanism in Modulation-Doped Shallow Two-Dimensional Electron Gases

    Full text link
    We report on a systematic investigation of the dominant scattering mechanism in shallow two-dimensional electron gases (2DEGs) formed in modulation-doped GaAs/Al_{x}Ga_{1-x}As heterostructures. The power-law exponent of the electron mobility versus density, mu \propto n^{alpha}, is extracted as a function of the 2DEG's depth. When shallower than 130 nm from the surface, the power-law exponent of the 2DEG, as well as the mobility, drops from alpha \simeq 1.65 (130 nm deep) to alpha \simeq 1.3 (60 nm deep). Our results for shallow 2DEGs are consistent with theoretical expectations for scattering by remote dopants, in contrast to the mobility-limiting background charged impurities of deeper heterostructures.Comment: 4 pages, 3 figures, modified version as accepted in AP

    Reply to Simon's Comment on "Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels"

    Get PDF
    We recently reported [PRL 82, 394 (1999)] large transport anisotropies in a two-dimensional electron gas in high Landau levels. These observations were made utilizing both square and Hall bar sample geometries. Simon recently commented [cond-mat/9903086] that a classical calculation of the current flow in the sample shows a magnification of an underlying anisotropy when using a square sample. In this reply we present more recent data obtained with a very high mobility sample, and reiterate that, with or without magnification, an anisotropic state develops in high Landau levels at very low temperatures.Comment: 1 page, 1 figur
    • …
    corecore